139 research outputs found

    Open circle maps: Small hole asymptotics

    Full text link
    We consider escape from chaotic maps through a subset of phase space, the hole. Escape rates are known to be locally constant functions of the hole position and size. In spite of this, for the doubling map we can extend the current best result for small holes, a linear dependence on hole size h, to include a smooth h^2 ln h term and explicit fractal terms to h^2 and higher orders, confirmed by numerical simulations. For more general hole locations the asymptotic form depends on a dynamical Diophantine condition using periodic orbits ordered by stability.Comment: This version has a new section investigating different hole locations. Now 9 pages, 3 figure

    Recent advances in open billiards with some open problems

    Full text link
    Much recent interest has focused on "open" dynamical systems, in which a classical map or flow is considered only until the trajectory reaches a "hole", at which the dynamics is no longer considered. Here we consider questions pertaining to the survival probability as a function of time, given an initial measure on phase space. We focus on the case of billiard dynamics, namely that of a point particle moving with constant velocity except for mirror-like reflections at the boundary, and give a number of recent results, physical applications and open problems.Comment: 16 pages, 1 figure in six parts. To appear in Frontiers in the study of chaotic dynamical systems with open problems (Ed. Z. Elhadj and J. C. Sprott, World Scientific

    Cycle expansions for intermittent diffusion

    Full text link
    We investigate intermittent diffusion using cycle expansions, and show that a truncation based on cycle stability achieves reasonable convergence.Comment: 6 pages, revtex, 4 figure

    Symmetric motifs in random geometric graphs

    Get PDF
    We study symmetric motifs in random geometric graphs. Symmetric motifs are subsets of nodes which have the same adjacencies. These subgraphs are particularly prevalent in random geometric graphs and appear in the Laplacian and adjacency spectrum as sharp, distinct peaks, a feature often found in real-world networks. We look at the probabilities of their appearance and compare these across parameter space and dimension. We then use the Chen-Stein method to derive the minimum separation distance in random geometric graphs which we apply to study symmetric motifs in both the intensive and thermodynamic limits. In the thermodynamic limit the probability that the closest nodes are symmetric approaches one, whilst in the intensive limit this probability depends upon the dimension.Comment: 11 page

    Distribution of Cell Area in Bounded Poisson Voronoi Tessellations with Application to Secure Local Connectivity

    Get PDF
    Poisson Voronoi tessellations have been used in modeling many types of systems across different sciences, from geography and astronomy to telecommunications. The existing literature on the statistical properties of Poisson Voronoi cells is vast, however, little is known about the properties of Voronoi cells located close to the boundaries of a compact domain. In a domain with boundaries, some Voronoi cells would be naturally clipped by the boundary, and the cell area falling inside the deployment domain would have different statistical properties as compared to those of non-clipped Voronoi cells located in the bulk of the domain. In this paper, we consider the planar Voronoi tessellation induced by a homogeneous Poisson point process of intensity λ ⁣> ⁣0\lambda\!>\!0 in a quadrant, where the two half-axes represent boundaries. We show that the mean cell area is less than λ1\lambda^{-1} when the seed is located exactly at the boundary, and it can be larger than λ1\lambda^{-1} when the seed lies close to the boundary. In addition, we calculate the second moment of cell area at two locations for the seed: (i) at the corner of a quadrant, and (ii) at the boundary of the half-plane. We illustrate that the two-parameter Gamma distribution, with location-dependent parameters calculated using the method of moments, can be of use in approximating the distribution of cell area. As a potential application, we use the Gamma approximations to study the degree distribution for secure connectivity in wireless sensor networks deployed over a domain with boundaries.Comment: to be publishe

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina
    corecore